CSE 4125: Distributed Database Systems

 Chapter-6

 Chapter-6}

Optimization of Access Strategies.
 (part - B)

Outline

- Importance of Query Optimization in DDB (with Examples).

Importance of Query Optimization in DDB (with Examples)

Comparison between different strategies

- We will see different versions of a query.
- Measure their cost and delay to see which one is better.

Given Scenario

Input Query:

Given Scenario (contd.)

- Profiles of SUPPLY 1_{1} and SUPPLY $_{2}$:
card $\left(\right.$ SUPPLY $\left._{1}\right)=30000$
card $\left(\right.$ SUPPLY $\left._{2}\right)=20000$
site $\left(\right.$ SUPPLY $\left._{1}\right)=1$

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

site $\left(S_{U P P L Y}^{2}\right)=4$

- Profiles of DEPT $_{1}$, DEPT $_{2}$ and DEPT $_{3}$:

```
card (DEPT )}=1
card (DEPT })=\operatorname{card}(\mp@subsup{\textrm{DEPT}}{3}{})=2
    site(DEPT ) = 2
    site(DEPT ) = 3
    site(DEPT ) = 5
```

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Strategy - 1

Strategy - 1

Strategy - 1 (contd.)

Strategy - 1 (contd.)

- Let us execute the query at site 2 .
- We need to collect all the fragments there (assume in parallel).

Strategy - 1 (contd.)

- Let us execute the query at site 2 .
- We need to collect all the fragments there (assume in parallel).
- Transmitted amount:

$$
X_{\text {SUPPLY } 1}=?
$$

Strategy - 1 (contd.)

- Let us execute the query at site 2 .
- We need to collect all the fragments there (assume in parallel).
- Transmitted amount:

$$
\begin{aligned}
X_{\text {SUPPLY } 1} & =\operatorname{card}\left(\text { SUPPLY }_{1}\right) * \text { size }\left(\text { SUPPLY }_{1}\right) * 8 \text { bits } \\
& =30000 *(6+7+2+10) * 8 \text { bits } \\
& =30000 * 25^{*} 8 \text { bits } \\
& =6000000 \text { bits }
\end{aligned}
$$

Strategy - 1 (contd.)

- Transmitted amount for other fragments:

$$
\begin{aligned}
& X_{\text {SUPPLY2 }}=? \\
& X_{\text {DEPT1 }}=? \\
& X_{\text {DEPT2 }}=? \\
& X_{\text {DEPT3 }}=?
\end{aligned}
$$

card $\left(\right.$ SUPPLY $\left._{2}\right)=20000$

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

$$
\begin{aligned}
& \operatorname{card}\left(\mathrm{DEPT}_{1}\right)=10 \\
& \operatorname{card}\left(\mathrm{DEPT}_{2}\right)=\operatorname{card}\left(\mathrm{DEPT}_{3}\right)=20
\end{aligned}
$$

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Strategy - 1 (contd.)

- Transmitted amount for other fragments:
$X_{\text {SUPPLY } 2}=20000 * 25^{*} 8$ bits $=4000000$ bits
$X_{\text {DEPT1 }}=0$ bits
$X_{\text {DEPT } 2}=10 * 25 * 8$ bits $=2000$ bits
$X_{\text {DEPT } 3}=10 * 25 * 8$ bits $=2000$ bits

Strategy - 1 (contd.)

Assume $\mathrm{C}_{0}=0$ and $\mathrm{D}_{0}=0$

- $T C(x)=$?
- $T D(x)=?$

Strategy - 1 (contd.)

Assume $\mathrm{C}_{0}=0$ and $\mathrm{D}_{0}=0$

- $\mathrm{TC}(\mathrm{x})=\mathrm{C}_{0}+\left(\right.$ sum of all the amount) ${ }^{*} \mathrm{C}_{1}$

$$
=\left(\mathrm{X}_{\text {SUPPLY } 1}+\ldots+\mathrm{X}_{\text {DEPT } 3}\right)^{*} \mathrm{C}_{1}=10004000 * \mathrm{C}_{1}
$$

- $T D(x)=$?

Strategy - 1 (contd.)

Assume $\mathrm{C}_{0}=0$ and $\mathrm{D}_{0}=0$

- $\mathrm{TC}(\mathrm{x})=\mathrm{C}_{0}+\left(\right.$ sum of all the amount) ${ }^{*} \mathrm{C}_{1}$

$$
=\left(X_{\text {SUPPLY } 1}+\ldots+X_{\text {DEPT } 3}\right)^{*} C_{1}=10004000 * C_{1}
$$

- $\mathrm{TD}(\mathrm{x})=\mathrm{D}_{0}+($ largest amount $) * \mathrm{D}_{1}$

$$
=6000000 * D_{1}
$$

Strategy - 1 (contd.)

Assume $\mathrm{C}_{0}=0$ and $\mathrm{D}_{0}=0$

- $T C(x)=C_{0}+($ sum of all the amount $) * C_{1}$

$$
=10004000 * C_{1}
$$

- $\mathrm{TD}(\mathrm{x})=\mathrm{D}_{0}+($ largest amount $) * \mathrm{D}_{1}$

$$
=6000000 * D_{1}
$$

If $D_{1}=10000 \mathrm{bit} /$ second,
Transmission Delay = ? minutes

Strategy - 1 (contd.)

Assume $\mathrm{C}_{0}=0$ and $\mathrm{D}_{0}=0$

- $T C(x)=C_{0}+($ sum of all the amount $) * C_{1}$

$$
=10004000 * \mathrm{C}_{1}
$$

- $\mathrm{TD}(\mathrm{x})=\mathrm{D}_{0}+($ largest amount $) * \mathrm{D}_{1}$

$$
=6000000 * D_{1}
$$

If $D_{1}=10000 \mathrm{bit} /$ second,
Transmission Delay $=6000000 * \frac{1}{10000} \mathrm{~s}=600 \mathrm{~s}=10 \mathrm{mins}$

Strategy - 2

Strategy - 2

Strategy - 2 (contd.)

Strategy - 2 (contd.)

- Performing local processing on fragments.
- Fragment reducers.
- Then sending reduced fragments to the executing site (i.e. site-2) in parallel.

Strategy - 2 (contd.)

- Transmitted amount:

Strategy - 2 (contd.)

- Transmitted amount:

$$
\begin{aligned}
X_{\text {SUPPLY } 1} & =\operatorname{card}\left(\text { SUPPLY }_{1}\right) *\{\text { size }(\text { snum })+\text { size }(\text { deptnum })\} * 8 \text { bits } \\
& =30000 *(6+2) * 8 \text { bits } \\
& =1920000 \text { bits }
\end{aligned}
$$

Strategy - 2 (contd.)

- Transmitted amount for other fragments:
$X_{\text {SUPPLY2 }}=$?
$X_{\text {DEPT1 }}=$?

Strategy - 2 (contd.)

- Transmitted amount for other fragments:
$X_{\text {SUPPIY } 2}=20000 * 8 * 8$ bits $=1280000$ bits
$X_{\text {DEPT1 }}=0$ bits
$\mathrm{X}_{\text {DEPT } 2} \approx 0$ bits Try to investigate why

Strategy - 2 (contd.)

Assume $\mathrm{C}_{0}=0$ and $\mathrm{D}_{0}=0$

- $T C(x)=C_{0}+($ sum of all the amount $) * C_{1}$

$$
=320000 * C_{1}
$$

- $\mathrm{TD}(\mathrm{x})=\mathrm{D}_{0}+($ largest amount $) * \mathrm{D}_{1}$

$$
=1920000 * D_{1}
$$

If $D_{1}=10000 \mathrm{bit} /$ second,
Transmission Delay $=1920000 * \frac{1}{10000} \mathrm{~s}=192 \mathrm{~s} \approx 3 \mathrm{mins}$

Strategy - 3

Strategy - 3

Strategy - 3 (contd.)

Strategy - 3 (contd.)

Strategy - 3 (contd.)

Which implies -

- area $=$ "North" \rightarrow deptnum ≤ 10
- deptnum $\leq 10 \rightarrow$ snum = snum and city = "Dhaka"

Assume -

- North area includes only department 1 to 10
- Orders from departments 1 to 10 come from suppliers of Dhaka.

Strategy - 3 (contd.)

Which implies -

- area $=$ "North" \rightarrow deptnum ≤ 10
- deptnum $\leq 10 \rightarrow$ snum = snum and city = "Dhaka"

Strategy - 3 (contd.)

Simplification using inference

- See Chapter 5 (5.2.5)

Strategy - 3 (contd.)

Strategy - 3 (contd.)

- Performing local processing on fragments.
- Fragment reducers.
- Then sending reduced fragments to the executing site (i.e. site-2) in parallel.

Strategy - 3 (contd.)

- Transmitted amount:

$$
\begin{aligned}
& X_{\text {SUPPLY } 1=?}=? \\
& \mathrm{X}_{\text {DEPT } 1}=?
\end{aligned}
$$

Strategy - 3 (contd.)

- Transmitted amount:
$X_{\text {SUPPLY } 1}=[$ same as strategy -2$]=1920000$ bits
$X_{\text {DEPT } 1}=0$ bits

Strategy - 3 (contd.)

Assume $\mathrm{C}_{0}=0$ and $\mathrm{D}_{0}=0$

- $\mathrm{TC}(\mathrm{x})=1920000^{*} \mathrm{C}_{1}$
- $T D(x)=1920000 * D_{1}$

If $D_{1}=10000 \mathrm{bit} /$ second,
Transmission Delay $\approx 3 \mathrm{mins}$

Strategy - 4

Strategy - 4

Strategy - 4 (contd.)

Strategy - 4 (contd.)

Strategy - 4 (contd.)

Strategy - 4 (contd.)

- Transmitted amounts:
$X_{\text {DEPT1 }}=$?
$X_{\text {RESULT }}=$?

Strategy - 4 (contd.)

- Transmitted amounts:
$X_{\text {DEPT1 }} \approx 0$ bits
$\mathrm{X}_{\text {RESULT }}=\mathrm{val}\left(\right.$ snum) ${ }^{*} 2 * 8$ bits $=1800 * 2 * 8$ bits $=28800$ bits

Strategy - 4 (contd.)

- Transmitted amounts:
$X_{\text {DEPT } 1} \approx 0$ bits
$X_{\text {RESULT }}=$ val (snum) $2 * 8$ bits $=1800 * 2 * 8$ bits $=28800$ bits
WHY ?? See Chapter 2
and investigate.

Strategy - 4 (contd.)

Assume $\mathrm{C}_{0}=0$ and $\mathrm{D}_{0}=0$

- $\mathrm{TC}(\mathrm{x})=28800^{*} \mathrm{C}_{1}$
- $T D(x)=28800 * D_{1}$

If $D_{1}=10000 \mathrm{bit} /$ second,
Transmission Delay $=2.88 \mathrm{~s}$

Comparisons

Strategy	Description	Time
$\begin{gathered} 1 \\ \text { (very bad) } \end{gathered}$	- No simplification, no optimization. - All fragments are brought to one site to execute the query.	10 m
$\begin{gathered} 2 \\ (\text { bad }) \end{gathered}$	- Simplification applied (Criterion -1 and 2). - No optimization. - Processing on fragments are done on the site locally. - Then, all fragments are brought to one site to execute the query.	3 m
$\begin{gathered} 3 \\ \text { (bad) } \end{gathered}$	- Simplification applied (Criterion -1 and 2), . - Optimization applied (Fragments are reduced). - Processing on fragments are done on the site locally. - Then, all fragments are brought to one site to execute the query.	3 m
$\begin{gathered} 4 \\ \text { (good) } \end{gathered}$	- Simplification applied (Criterion -1 and 2). - Optimization applied (Fragments are reduced). - Processing on fragments are done on the site locally. - Order of data transmission is changed.	2.88 s

Additional Reading

- Simplification using inference.
- Chapter 5 (5.2.5)

Practice Problems/ Questions

1. What will happen for strategy -1 if the data collection from all the fragments are done sequentially, instead of in parallel?
2. What will happen if we skip the simplification via inference on the operator tree and apply strategy 4 ?
3. What will happen in the comparisons if we execute the query at site -3 ?
